Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Thromb Haemost ; 21(3): 629-638, 2023 03.
Article in English | MEDLINE | ID: covidwho-2260707

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE: To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS: Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS: Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS: Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Extracellular Vesicles , Thrombosis , Humans , Extracellular Vesicles/metabolism , Leukocytes, Mononuclear/metabolism , SARS-CoV-2 , Thromboplastin/metabolism
2.
Front Immunol ; 14: 1130288, 2023.
Article in English | MEDLINE | ID: covidwho-2259138

ABSTRACT

Introduction: Thromboinflammatory complications are well described sequalae of Coronavirus Disease 2019 (COVID-19), and there is evidence of both hyperreactive platelet and inflammatory neutrophil biology that contributes to the thromoinflammatory milieu. It has been demonstrated in other thromboinflammatory diseases that the circulating environment may affect cellular behavior, but what role this environment exerts on platelets and neutrophils in COVID-19 remains unknown. We tested the hypotheses that 1) plasma from COVID-19 patients can induce a prothrombotic platelet functional phenotype, and 2) contents released from platelets (platelet releasate) from COVID-19 patients can induce a proinflammatory neutrophil phenotype. Methods: We treated platelets with COVID-19 patient and disease control plasma, and measured their aggregation response to collagen and adhesion in a microfluidic parallel plate flow chamber coated with collagen and thromboplastin. We exposed healthy neutrophils to platelet releasate from COVID-19 patients and disease controls and measured neutrophil extracellular trap formation and performed RNA sequencing. Results: We found that COVID-19 patient plasma promoted auto-aggregation, thereby reducing response to further stimulation ex-vivo. Neither disease condition increased the number of platelets adhered to a collagen and thromboplastin coated parallel plate flow chamber, but both markedly reduced platelet size. COVID-19 patient platelet releasate increased myeloperoxidasedeoxyribonucleic acid complexes and induced changes to neutrophil gene expression. Discussion: Together these results suggest aspects of the soluble environment circulating platelets, and that the contents released from those neutrophil behavior independent of direct cellular contact.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , Neutrophils/metabolism , COVID-19/metabolism , Thromboplastin/metabolism , Collagen/metabolism
3.
Immunol Rev ; 312(1): 61-75, 2022 11.
Article in English | MEDLINE | ID: covidwho-2136897

ABSTRACT

Tissue factor (TF) is a procoagulant protein released from activated host cells, such as monocytes, and tumor cells on extracellular vesicles (EVs). TF + EVs are observed in the circulation of patients with various types of diseases. In this review, we will summarize the association between TF + EVs and activation of coagulation and survival in different types of diseases, including cancer, sepsis, and infections with different viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will also discuss the source of TF + EVs in various diseases. EVTF activity is associated with thrombosis in pancreatic cancer patients and coronavirus disease 2019 patients (COVID-19) and with disseminated intravascular coagulation in cancer patients. EVTF activity is also associated with worse survival in patients with cancer and COVID-19. Monocytes are the major sources of TF + EVs in sepsis, and viral infections, such as HIV, Ebola virus, and SARS-CoV-2. In contrast, alveolar epithelial cells are the major source of TF + EVs in bronchoalveolar lavage fluid in COVID-19 and influenza A patients. These studies indicate that EVTF activity could be used as a biomarker to identify patients that have an increased risk of coagulopathy and mortality.


Subject(s)
COVID-19 , Extracellular Vesicles , Pancreatic Neoplasms , Sepsis , Thrombosis , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , SARS-CoV-2 , Thromboplastin/metabolism
4.
Thromb Res ; 220: 35-47, 2022 12.
Article in English | MEDLINE | ID: covidwho-2106047

ABSTRACT

Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1ß, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thrombosis , Humans , Thromboplastin/metabolism , COVID-19/complications , Critical Illness , SARS-CoV-2 , Blood Coagulation Disorders/complications , Thrombosis/etiology
6.
Vascul Pharmacol ; 145: 106999, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852225

ABSTRACT

Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Biomarkers/metabolism , COVID-19/diagnosis , Extracellular Vesicles/metabolism , Humans , Reproducibility of Results , Risk Assessment/methods , SARS-CoV-2 , Thromboplastin/metabolism
7.
Front Immunol ; 13: 876555, 2022.
Article in English | MEDLINE | ID: covidwho-1809408

ABSTRACT

SARS-CoV-2 infects cells via binding to ACE2 and TMPRSS2, which allows the virus to fuse with host cells. The viral RNA is detected in the placenta of SARS-CoV-2-infected pregnant women and infection is associated with adverse pregnancy complications. Therefore, we hypothesize that SARS-CoV-2 infection of placental cells induces pro-inflammatory cytokine release to contribute to placental dysfunction and impaired pregnancy outcomes. First, expression of ACE2 and TMPRSS2 was measured by qPCR in human primary cultured term cytotrophoblasts (CTBs), syncytiotrophoblast (STBs), term and first trimester decidual cells (TDCs and FTDCs, respectively), endometrial stromal cells (HESCs) as well as trophoblast cell lines HTR8, JEG3, placental microvascular endothelial cells (PMVECs) and endometrial endothelial cells (HEECs). Later, cultured HTR8, JEG3, PMVECs and HEECs were treated with 10, 100, 1000 ng/ml of recombinant (rh-) SARS-CoV-2 S-protein ± 10 ng/ml rh-IFNγ. Pro-inflammatory cytokines IL-1ß, 6 and 8, chemokines CCL2, CCL5, CXCL9 and CXCL10 as well as tissue factor (F3), the primary initiator of the extrinsic coagulation cascade, were measured by qPCR as well as secreted IL-6 and IL-8 levels were measured by ELISA. Immunohistochemical staining for SARS-CoV-2 spike protein was performed in placental specimens from SARS-CoV-2-positive and normal pregnancies. ACE2 levels were significantly higher in CTBs and STBs vs. TDCs, FTDCs and HESCs, while TMPRSS2 levels were not detected in TDCs, FTDCs and HESCs. HTR8 and JEG3 express ACE2 and TMPRSS2, while PMVECs and HEECs express only ACE2, but not TMPRSS2. rh-S-protein increased proinflammatory cytokines and chemokines levels in both trophoblast and endothelial cells, whereas rh-S-protein only elevated F3 levels in endothelial cells. rh-IFNγ ± rh-S-protein augments expression of cytokines and chemokines in trophoblast and endothelial cells. Elevated F3 expression by rh-IFNγ ± S-protein was observed only in PMVECs. In placental specimens from SARS-CoV-2-infected mothers, endothelial cells displayed higher immunoreactivity against spike protein. These findings indicated that SARS-CoV-2 infection in placental cells: 1) induces pro-inflammatory cytokine and chemokine release, which may contribute to the cytokine storm observed in severely infected pregnant women and related placental dysfunction; and 2) elevates F3 expression that may trigger systemic or placental thrombosis.


Subject(s)
COVID-19 , Placenta Diseases , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2 , Cell Line, Tumor , Cytokines/metabolism , Endothelial Cells/pathology , Female , Humans , Placenta/metabolism , Placenta Diseases/pathology , Pregnancy , Pregnant Women , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thromboplastin/metabolism
8.
Blood Adv ; 6(12): 3593-3605, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1799124

ABSTRACT

Platelets are hyperactivated in coronavirus disease 2019 (COVID-19). However, the mechanisms promoting platelet activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood. This may be due to inherent challenges in discriminating the contribution of viral vs host components produced by infected cells. This is particularly true for enveloped viruses and extracellular vesicles (EVs), as they are concomitantly released during infection and share biophysical properties. To study this, we evaluated whether SARS-CoV-2 itself or components derived from SARS-CoV-2-infected human lung epithelial cells could activate isolated platelets from healthy donors. Activation was measured by the surface expression of P-selectin and the activated conformation of integrin αIIbß3, degranulation, aggregation under flow conditions, and the release of EVs. We find that neither SARS-CoV-2 nor purified spike activates platelets. In contrast, tissue factor (TF) produced by infected cells was highly potent at activating platelets. This required trace amounts of plasma containing the coagulation factors FX, FII, and FVII. Robust platelet activation involved thrombin and the activation of protease-activated receptor (PAR)-1 and -4 expressed by platelets. Virions and EVs were identified by electron microscopy. Through size-exclusion chromatography, TF activity was found to be associated with a virus or EVs, which were indistinguishable. Increased TF messenger RNA (mRNA) expression and activity were also found in lungs in a murine model of COVID-19 and plasma of severe COVID-19 patients, respectively. In summary, TF activity from SARS-CoV-2-infected cells activates thrombin, which signals to PARs on platelets. Blockade of molecules in this pathway may interfere with platelet activation and the coagulation characteristic of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Platelet Activation , Thrombin , Thromboplastin/metabolism
9.
Blood Adv ; 6(17): 5085-5099, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1789100

ABSTRACT

Accumulating evidence into the pathogenesis of COVID-19 highlights a hypercoagulability state with high risk of life-threatening thromboembolic complications. However, the mechanisms of hypercoagulability and their link to hyperinflammation remain poorly understood. Here, we investigate functions and mechanisms of platelet activation and platelet-monocyte interactions in inflammatory amplification during SARS-CoV-2 infection. We used a combination of immunophenotyping, single-cell analysis, functional assays, and pharmacological approaches to gain insights on mechanisms. Critically ill patients with COVID-19 exhibited increased platelet-monocyte aggregates formation. We identified a subset of inflammatory monocytes presenting high CD16 and low HLA-DR expression as the subset mainly interacting with platelets during severe COVID-19. Single-cell RNA-sequencing analysis indicated enhanced fibrinogen receptor Mac-1 in monocytes from patients with severe COVID-19. Monocytes from patients with severe COVID-19 displayed increased platelet binding and hyperresponsiveness to P-selectin and fibrinogen with respect to tumor necrosis factor-α and interleukin-1ß secretion. Platelets were able to orchestrate monocyte responses driving tissue factor (TF) expression, inflammatory activation, and inflammatory cytokines secretion in SARS-CoV-2 infection. Platelet-monocyte interactions ex vivo and in SARS-CoV-2 infection model in vitro reciprocally activated monocytes and platelets, inducing the heightened secretion of a wide panel of inflammatory mediators. We identified platelet adhesion as a primary signaling mechanism inducing mediator secretion and TF expression, whereas TF signaling played major roles in amplifying inflammation by inducing proinflammatory cytokines, especially tumor necrosis factor-α and interleukin-1ß. Our data identify platelet-induced TF expression and activity at the crossroad of coagulation and inflammation in severe COVID-19.


Subject(s)
COVID-19 , Thrombophilia , Thrombosis , Blood Platelets/metabolism , Cytokines/metabolism , Humans , Inflammation/pathology , Interleukin-1beta/metabolism , Monocytes/metabolism , SARS-CoV-2 , Thromboinflammation , Thromboplastin/metabolism , Thrombosis/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Biomed Pharmacother ; 149: 112920, 2022 May.
Article in English | MEDLINE | ID: covidwho-1767922

ABSTRACT

Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.


Subject(s)
COVID-19 , Thromboplastin , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Critical Illness , Enoxaparin/pharmacology , Enoxaparin/therapeutic use , Heparin , Humans , Pandemics , Thromboplastin/metabolism
11.
Biochem J ; 479(6): 731-750, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1764226

ABSTRACT

The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1ß and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.


Subject(s)
COVID-19 Drug Treatment , Thrombosis , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Humans , Inflammation/complications , Pyroptosis , SARS-CoV-2 , Thromboinflammation , Thromboplastin/metabolism
12.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1674671

ABSTRACT

Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.


Subject(s)
Blood Proteins/isolation & purification , Heparin/pharmacology , Thromboinflammation/drug therapy , Blood Coagulation/physiology , Blood Platelets/metabolism , Blood Proteins/metabolism , COVID-19/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism , HMGB Proteins/isolation & purification , HMGB Proteins/metabolism , HMGB1 Protein/isolation & purification , HMGB1 Protein/metabolism , Heparin/metabolism , Histones/isolation & purification , Histones/metabolism , Humans , Neutrophils/metabolism , Platelet Activation/immunology , Platelet Factor 4/isolation & purification , Platelet Factor 4/metabolism , SARS-CoV-2/pathogenicity , Sepsis/blood , Sepsis/metabolism , Thromboplastin/metabolism , Thrombosis/drug therapy
13.
Biomolecules ; 11(11)2021 10 20.
Article in English | MEDLINE | ID: covidwho-1480577

ABSTRACT

SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.


Subject(s)
Alarmins , COVID-19/virology , SARS-CoV-2 , Thromboinflammation/virology , Thrombosis/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Blood Coagulation , Blood Platelets/virology , COVID-19/complications , DNA/metabolism , Extracellular Traps , Heparin/metabolism , Histones/metabolism , Humans , Mice , Neuropilin-1/metabolism , RNA/metabolism , Signal Transduction , Thrombin/metabolism , Thromboplastin/metabolism , Thrombosis/complications
14.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
16.
Eur Rev Med Pharmacol Sci ; 25(10): 3886-3897, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264765

ABSTRACT

OBJECTIVE: Platelets, blood coagulation along with fibrinolysis are greatly involved in the pathophysiology of infectious diseases induced by bacteria, parasites and virus. This phenomenon is not surprising since both the innate immunity and the hemostatic systems are two ancestral mechanisms which closely cooperate favoring host's defense against foreign invaders. However, the excessive response of these systems may be dangerous for the host itself. MATERIALS AND METHODS: We searched and retrieved the articles, using the following electronic database: MedLine and Embase. We limited our search to articles published in English, but no restrictions in terms of article type, publication year, and geography were adopted. RESULTS: The hemostatic phenotype of the infectious diseases is variable depending on the points of attack of the different involved pathogens. Infectious diseases which show a prothrombotic phenotype are bacterial sepsis, SARS-CoV-2 and malaria. However, among the bacterial sepsis, Yersinia Pestis is characterized by a profibrinolytic behavior. On the contrary, the hemorrhagic fevers, due to Dengue and Ebola virus, mainly exploit the activation of fibrinolysis secondary to a huge endothelial damage which can release a large amount of t-PA in the early phase of the diseases. CONCLUSIONS: Blood coagulation and fibrinolysis are greatly activated based on the strategy of the different infectious agents which exploit the excess of response of both systems to achieve the greatest possible virulence.


Subject(s)
Blood Coagulation , COVID-19/pathology , Fibrinolysis , COVID-19/complications , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , SARS-CoV-2/isolation & purification , Thromboplastin/metabolism , Viruses/pathogenicity
17.
J Intern Med ; 290(3): 677-692, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255442

ABSTRACT

BACKGROUND: Prognostic markers for disease severity and identification of therapeutic targets in COVID-19 are urgently needed. We have studied innate and adaptive immunity on protein and transcriptomic level in COVID-19 patients with different disease severity at admission and longitudinally during hospitalization. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected at three time points from 31 patients included in the Norwegian SARS-CoV-2 cohort study and analysed by flow cytometry and RNA sequencing. Patients were grouped as either mild/moderate (n = 14), severe (n = 11) or critical (n = 6) disease in accordance with WHO guidelines and compared with patients with SARS-CoV-2-negative bacterial sepsis (n = 5) and healthy controls (n = 10). RESULTS: COVID-19 severity was characterized by decreased interleukin 7 receptor alpha chain (CD127) expression in naïve CD4 and CD8 T cells. Activation (CD25 and HLA-DR) and exhaustion (PD-1) markers on T cells were increased compared with controls, but comparable between COVID-19 severity groups. Non-classical monocytes and monocytic HLA-DR expression decreased whereas monocytic PD-L1 and CD142 expression increased with COVID-19 severity. RNA sequencing exhibited increased plasma B-cell activity in critical COVID-19 and yet predominantly reduced transcripts related to immune response pathways compared with milder disease. CONCLUSION: Critical COVID-19 seems to be characterized by an immune profile of activated and exhausted T cells and monocytes. This immune phenotype may influence the capacity to mount an efficient T-cell immune response. Plasma B-cell activity and calprotectin were higher in critical COVID-19 while most transcripts related to immune functions were reduced, in particular affecting B cells. The potential of these cells as therapeutic targets in COVID-19 should be further explored.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/immunology , Transcriptome , Adaptive Immunity , Adult , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-7/immunology , Leukocyte L1 Antigen Complex/blood , Male , Middle Aged , Monocytes/immunology , Phenotype , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Thromboplastin/immunology , Thromboplastin/metabolism
18.
Front Immunol ; 12: 664209, 2021.
Article in English | MEDLINE | ID: covidwho-1247863

ABSTRACT

Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited. Objectives: To evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome. Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured. Measurements and Main Results: In all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined. Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory "storm" in severe COVID-19.


Subject(s)
COVID-19/immunology , Critical Illness , Lung/metabolism , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Thromboplastin/metabolism , Aged , Blood Coagulation , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Follow-Up Studies , Humans , Immunity, Innate , Lung/pathology , Male , Middle Aged , Respiration, Artificial
19.
EBioMedicine ; 67: 103369, 2021 May.
Article in English | MEDLINE | ID: covidwho-1220821

ABSTRACT

BACKGROUND: Coronavirus-2 (SARS-CoV-2) infection causes an acute respiratory syndrome accompanied by multi-organ damage that implicates a prothrombotic state leading to widespread microvascular clots. The causes of such coagulation abnormalities are unknown. The receptor tissue factor, also known as CD142, is often associated with cell-released extracellular vesicles (EV). In this study, we aimed to characterize surface antigens profile of circulating EV in COVID-19 patients and their potential implication as procoagulant agents. METHODS: We analyzed serum-derived EV from 67 participants who underwent nasopharyngeal swabs molecular test for suspected SARS-CoV-2 infection (34 positives and 33 negatives) and from 16 healthy controls (HC), as referral. A sub-analysis was performed on subjects who developed pneumonia (n = 28). Serum-derived EV were characterized for their surface antigen profile and tested for their procoagulant activity. A validation experiment was performed pre-treating EV with anti-CD142 antibody or with recombinant FVIIa. Serum TNF-α levels were measured by ELISA. FINDINGS: Profiling of EV antigens revealed a surface marker signature that defines circulating EV in COVID-19. A combination of seven surface molecules (CD49e, CD209, CD86, CD133/1, CD69, CD142, and CD20) clustered COVID (+) versus COVID (-) patients and HC. CD142 showed the highest discriminating performance at both multivariate models and ROC curve analysis. Noteworthy, we found that CD142 exposed onto surface of EV was biologically active. CD142 activity was higher in COVID (+) patients and correlated with TNF-α serum levels. INTERPRETATION: In SARS-CoV-2 infection the systemic inflammatory response results in cell-release of substantial amounts of procoagulant EV that may act as clotting initiation agents, contributing to disease severity. FUNDING: Cardiocentro Ticino Institute, Ente ospedaliero Cantonale, Lugano-Switzerland.


Subject(s)
COVID-19/complications , Extracellular Vesicles/immunology , Thromboplastin/metabolism , Thrombosis/blood , Adult , Aged , Aged, 80 and over , Antigens, Surface/analysis , Biomarkers/analysis , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Switzerland , Thrombosis/etiology , Thrombosis/immunology , Tumor Necrosis Factor-alpha/blood
20.
Clin Appl Thromb Hemost ; 27: 10760296211003983, 2021.
Article in English | MEDLINE | ID: covidwho-1159169

ABSTRACT

COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.


Subject(s)
COVID-19 Drug Treatment , COVID-19/metabolism , Celecoxib/therapeutic use , Colchicine/therapeutic use , Cyclosporine/therapeutic use , SARS-CoV-2/metabolism , Thromboplastin/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Cytokines/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL